
Optimal Mechanism for Selling Two Goods with
Uniformly Distributed Valuations

Thirumulanathan D
Indian Institute of Science, Bengaluru

Advisers: Prof. Rajesh Sundaresan, Prof. Y Narahari

1 Aug 2015



The setup

I Consider the problem of auctioning two items to a single buyer.

I The buyer’s valuations z = (z1, z2) ∈ ×2
i=1[ci , ci + bi ]. Let

D = ×2
i=1[ci , ci + bi ].

I zi ∼ fi , z ∼ f = f1f2, where f is common knowledge. The
buyer bids ẑ .

I Based on the value of ẑ , the auctioneer decides the allocation
probability q : D → [0, 1]2, and the payment from the buyer
t : D → R.

I Consider a quasi-linear mechanism, where the utility function
of the buyer is given by u(z , ẑ) = z · q(ẑ)− t(ẑ).
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I Based on the value of ẑ , the auctioneer decides the allocation

probability q : D → [0, 1]2, and the payment from the buyer
t : D → R.

I Consider a quasi-linear mechanism, where the utility function
of the buyer is given by u(z , ẑ) = z · q(ẑ)− t(ẑ).
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Optimal Auctions

I Auctioneer’s objective: Maximize Ez t(z), subject to IC and
IR constraints.

I IC: u(z) ≥ u(z , ẑ)∀z , ẑ ∈ D.
IR: u(z) ≥ 0 ∀z ∈ D.

I The solution for the single item case was solved by Myerson
way back in 1981.1

I Define φ(z) = z − 1−F (z)
f (z) . Assume that φ is increasing. Then

the optimal allocation is given by

q(z) =

{
1 if φ(z) ≥ 0
0 if φ(z) ≤ 0.

I Myerson has also provided the solution for the single-item
n-buyer setting.

1Myerson, R.B. (1981): "Optimal Auction Design," Mathematics of
Operations Research, 6, 58-63.
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Two-item optimal auctions

I What happens in the two-item one-buyer setting?

I The general solution is not known till date!
I The solution is known for cases when the distributions f1 and

f2 give rise to a so-called well-formed partition of the support
set D.

I Cases such as f = Unif [0, b1]× [0, b2], f = exp(λ1)× exp(λ2),
and f = Beta × Beta belong to this category.

I The optimal solution for all these cases was given by
Daskalakis et al.2

I In this talk, we shall derive the formulation of the optimization
problem as done by Daskalakis et al., discuss their solutions
when f = Unif [0, b1]× [0, b2], and then the work that we have
done to find the optimal solution for the case when
f = Unif [c1, c1 + b1]× [c2, c2 + b2].

2C.Daskalakis, A.Deckelbaum, and C.Tzamos, “Strong Duality for a
Multiple Good Monopolist”, http://arxiv.org/pdf/1409.4150v1.pdf
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Primal problem

I Recall that the auctioneer’s objective was to maximize Ez t(z)
w.r.t. IC and IR constraints.

I Rochet’s theorem provides a necessary and sufficient condition
for a mechanism to be IC and IR.

Theorem
A quasi-linear mechanism satisfies IC and IR, iff u(·) is convex,
∇u(z) = q(z) a.e. z ∈ D, and u(z) ≥ 0 ∀z ∈ D.3

I This theorem helps us formulate the optimization problem
completely in terms of u.

max
u

∫
D

(z · ∇u(z)− u(z))f (z) dz

s.t. {u convex, ∇u(z) ∈ [0, 1]2 a.e. z , and u(z) ≥ 0 ∀z .}

3J.C.Rochet, “The Taxation Principle and the Multi-time Hamilton Jacobi
Equations”, Journal of Mathematical Economics 14, 2 (April 1985), 113â128.



Primal problem (contd...)

I The problem undergoes a series of simplifications as follows:

I ∇u(z) ∈ [0, 1]2 ⇔ u(x)− u(y) ≤ c(x , y)∀x , y ∈ D2, where,
c(x , y) = (x1 − y1)+ + (x2 − y2)+.

I u(z) ≥ 0⇔ u(0, 0) ≥ 0, since u(0, 0) ≥ 0 combined with
∇u ≥ 0 implies u(z) ≥ 0.

I We further consider u(0, 0) = 0, since fixing u(0, 0) > 0 only
reduces the objective function.

I The optimization problem now becomes

max
u

∫
D

(z · ∇u(z)− u(z))f (z) dz

s.t. {u convex, u(x)− u(y) ≤ c(x , y) ∀(x , y), and u(0, 0) = 0.}
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Primal problem (contd...)

I Using integration by parts, the objective function can be
written as,∫

D
(z · ∇u(z)− u(z))f (z) dz =

∫
D
u d(µ+ µs)

I µ(z) := −z · ∇f (z)− 3f (z), µs(z) := f (z)(z · n)1(z ∈ ∂D).

I µ is the density of a measure absolutely continuous w.r.t. L2.
µs , w.r.t. L1, n is the normal to the surface ∂D.

I We have
∫
D d(µ+ µs) = −1.

I To make this 0, we add a point measure µp of 1 at (0, 0).
I Defining µ̄ = µ+ µs + µp, we have the objective function to

be
∫
D u d µ̄. Observe that defining µp causes no harm to the

objective function since u(0, 0) = 0.
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Primal and the dual

The Primal problem:

max
u

∫
D
u d µ̄

s.t. {u convex , u(x)− u(y) ≤ c(x , y)∀(x , y), u(0, 0) = 0.}

The Dual problem:

inf
γ

∫
D×D

c(x , y) dγ(x , y)

s.t. {γ(·,D) = γ1(·), γ(D, ·) = γ2(·), and γ1 − γ2 �cvx µ̄.}

where we say the measure α convex dominates measure β
(α �cvx β) if for every convex and increasing function, we have∫
D f dα ≥

∫
D f dβ.



The Optimal Transport problem

I The dual problem is a version of optimal transport problem.

I c(x , y)→ Cost of transporting unit mass from x to y .
I γ(x , y)→ The differential mass transported from x to y .
I We need to find a way to minimize the cost of transportation

subject to the constraint that γ1 − γ2 �cvx µ̄.
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The solution by Daskalakis et al.

I The problem of optimal transport was solved by Daskalakis et
al. for f1 and f2 that give rise to a well-formed canonical
partition of the support set D.

I The solution when f = Unif [0, b1]× [0, b2] is:

where the line joining P and Q is z1 + z2 = 2b1+2b2−
√

2b1b2
3 .

I The optimal γ that they provide is such that γ1 − γ2 = µ̄.
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Uniform [c1, c1 + b1]× [c2, c2 + b2]

I The procedure suggested by Daskalakis et al. does not extend
to arbitrary nonnegative values of (c1, c2, b1, b2).

I We aim to find a measure ᾱ such that ᾱ �cvx 0, and then to
construct a γ such that γ1 − γ2 = µ̄+ ᾱ �cvx µ̄.

I One can prove that ᾱ �cvx 0 for any m2 ≥ m1 ≥ 0, m3 ≥ 0.
I We thus find a solution which does not relax the convexity

constraint.
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The general structure

(a)

(b)

(c)

(d) (e)

(f) (g) (h)



Conjecture

Conjecture
Consider z ∼ Unif [c1, c1 + b1]× [c2, c2 + b2]. The structure of the
optimal solution for any (c1, c2, b1, b2) ∈ R4

+ is one among the
eight structures (a)-(h).
In other words, defining Ex to be the set of all (c1, c2, b1, b2) such
that the optimal solution has the structure “x”, “x” taking any
alphabet from (a) to (h), we conjecture that ∪h

x=aEx = R4
+.



Structures when c1 = 0

Theorem
Consider z ∼ Unif [0, b1]× [c2, c2 + b2]. Then the optimal solution
has one of the following structures when b1

b2
≥ 2 :



Structures when c1 = 0

The optimal solution has one of the following structures when
b1
b2
∈ [0.6541, 2] :



Structures when c1 = 0

The optimal solution has one of the following structures when
b1
b2
∈ [0, 0.6541] :



Summary

I Formulated the two-item single-buyer auction as an
optimization problem.

I Found its dual to be the the problem of optimal transport.
I Provided the optimal solution when the underlying distribution

of the buyer’s valuations are uniform in [0, b1]× [0, b2].
I Identifying that the solution was found by relaxing the

convexity constraint, we found a “shuffle measure” ᾱ, and tried
to construct a γ that has its convexity constraint tight.

I We conjecture that the optimal solution satisfies one of the
eight structures given by the shuffle measure.

I The optimal solution was proved to have one of those
structures when c1 = 0.
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to construct a γ that has its convexity constraint tight.

I We conjecture that the optimal solution satisfies one of the
eight structures given by the shuffle measure.

I The optimal solution was proved to have one of those
structures when c1 = 0.



Summary

I Formulated the two-item single-buyer auction as an
optimization problem.

I Found its dual to be the the problem of optimal transport.
I Provided the optimal solution when the underlying distribution

of the buyer’s valuations are uniform in [0, b1]× [0, b2].
I Identifying that the solution was found by relaxing the

convexity constraint, we found a “shuffle measure” ᾱ, and tried
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I The optimal solution was proved to have one of those
structures when c1 = 0.



Future Work

I Can the conjecture be proved? Or can we find a
counter-example of a (c1, c2, b1, b2) whose structure of
optimal solution is different from the eight?

I How do we find the optimal solution when the distribution of
valuations is not uniform? Can we derive a general solution for
finding the solution for any distribution?

I What happens when the number of buyers is more than 1?
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