

Optimal Mechanism for Selling Two Goods with Uniformly Distributed Valuations

Thirumulanathan D

Indian Institute of Science, Bengaluru

Advisers: Prof. Rajesh Sundaresan, Prof. Y Narahari

1 Aug 2015

The setup

- ▶ Consider the problem of auctioning two items to a *single buyer*.

The setup

- ▶ Consider the problem of auctioning two items to a *single buyer*.
- ▶ The buyer's valuations $z = (z_1, z_2) \in \times_{i=1}^2 [c_i, c_i + b_i]$. Let $D = \times_{i=1}^2 [c_i, c_i + b_i]$.
- ▶ $z_i \sim f_i$, $z \sim f = f_1 f_2$, where f is common knowledge. The buyer bids \hat{z} .

The setup

- ▶ Consider the problem of auctioning two items to a *single buyer*.
- ▶ The buyer's valuations $z = (z_1, z_2) \in \times_{i=1}^2 [c_i, c_i + b_i]$. Let $D = \times_{i=1}^2 [c_i, c_i + b_i]$.
- ▶ $z_i \sim f_i$, $z \sim f = f_1 f_2$, where f is common knowledge. The buyer bids \hat{z} .
- ▶ Based on the value of \hat{z} , the auctioneer decides the allocation probability $q : D \rightarrow [0, 1]^2$, and the payment from the buyer $t : D \rightarrow \mathbb{R}$.

The setup

- ▶ Consider the problem of auctioning two items to a *single buyer*.
- ▶ The buyer's valuations $z = (z_1, z_2) \in \times_{i=1}^2 [c_i, c_i + b_i]$. Let $D = \times_{i=1}^2 [c_i, c_i + b_i]$.
- ▶ $z_i \sim f_i$, $z \sim f = f_1 f_2$, where f is common knowledge. The buyer bids \hat{z} .
- ▶ Based on the value of \hat{z} , the auctioneer decides the allocation probability $q : D \rightarrow [0, 1]^2$, and the payment from the buyer $t : D \rightarrow \mathbb{R}$.
- ▶ Consider a quasi-linear mechanism, where the utility function of the buyer is given by $u(z, \hat{z}) = z \cdot q(\hat{z}) - t(\hat{z})$.

Optimal Auctions

- ▶ **Auctioneer's objective:** Maximize $\mathbb{E}_z t(z)$, subject to IC and IR constraints.
- ▶ **IC:** $u(z) \geq u(z, \hat{z}) \forall z, \hat{z} \in D$.
IR: $u(z) \geq 0 \forall z \in D$.

¹Myerson, R.B. (1981): "Optimal Auction Design," Mathematics of Operations Research, 6, 58-63.

Optimal Auctions

- ▶ **Auctioneer's objective:** Maximize $\mathbb{E}_z t(z)$, subject to IC and IR constraints.
- ▶ **IC:** $u(z) \geq u(z, \hat{z}) \forall z, \hat{z} \in D$.
IR: $u(z) \geq 0 \forall z \in D$.
- ▶ The solution for the single item case was solved by Myerson way back in 1981.¹

¹Myerson, R.B. (1981): "Optimal Auction Design," Mathematics of Operations Research, 6, 58-63.

Optimal Auctions

- ▶ **Auctioneer's objective:** Maximize $\mathbb{E}_z t(z)$, subject to IC and IR constraints.
- ▶ **IC:** $u(z) \geq u(z, \hat{z}) \forall z, \hat{z} \in D$.
IR: $u(z) \geq 0 \forall z \in D$.
- ▶ The solution for the single item case was solved by Myerson way back in 1981.¹
- ▶ Define $\phi(z) = z - \frac{1-F(z)}{f(z)}$. Assume that ϕ is increasing. Then the optimal allocation is given by

$$q(z) = \begin{cases} 1 & \text{if } \phi(z) \geq 0 \\ 0 & \text{if } \phi(z) \leq 0. \end{cases}$$

- ▶ Myerson has also provided the solution for the single-item n -buyer setting.

¹Myerson, R.B. (1981): "Optimal Auction Design," Mathematics of Operations Research, 6, 58-63.

Two-item optimal auctions

- ▶ What happens in the two-item one-buyer setting?

²C.Daskalakis, A.Deckelbaum, and C.Tzamos, "Strong Duality for a Multiple Good Monopolist", <http://arxiv.org/pdf/1409.4150v1.pdf>

Two-item optimal auctions

- ▶ What happens in the two-item one-buyer setting?
- ▶ The general solution is not known till date!

²C.Daskalakis, A.Deckelbaum, and C.Tzamos, "Strong Duality for a Multiple Good Monopolist", <http://arxiv.org/pdf/1409.4150v1.pdf>

Two-item optimal auctions

- ▶ What happens in the two-item one-buyer setting?
- ▶ The general solution is not known till date!
- ▶ The solution is known for cases when the distributions f_1 and f_2 give rise to a so-called *well-formed* partition of the support set D .
- ▶ Cases such as $f = \text{Unif}[0, b_1] \times [0, b_2]$, $f = \exp(\lambda_1) \times \exp(\lambda_2)$, and $f = \text{Beta} \times \text{Beta}$ belong to this category.

²C.Daskalakis, A.Deckelbaum, and C.Tzamos, "Strong Duality for a Multiple Good Monopolist", <http://arxiv.org/pdf/1409.4150v1.pdf>

Two-item optimal auctions

- ▶ What happens in the two-item one-buyer setting?
- ▶ The general solution is not known till date!
- ▶ The solution is known for cases when the distributions f_1 and f_2 give rise to a so-called *well-formed* partition of the support set D .
- ▶ Cases such as $f = \text{Unif}[0, b_1] \times [0, b_2]$, $f = \exp(\lambda_1) \times \exp(\lambda_2)$, and $f = \text{Beta} \times \text{Beta}$ belong to this category.
- ▶ The optimal solution for all these cases was given by Daskalakis et al.²

²C.Daskalakis, A.Deckelbaum, and C.Tzamos, "Strong Duality for a Multiple Good Monopolist", <http://arxiv.org/pdf/1409.4150v1.pdf>

Two-item optimal auctions

- ▶ What happens in the two-item one-buyer setting?
- ▶ The general solution is not known till date!
- ▶ The solution is known for cases when the distributions f_1 and f_2 give rise to a so-called *well-formed* partition of the support set D .
- ▶ Cases such as $f = \text{Unif}[0, b_1] \times [0, b_2]$, $f = \exp(\lambda_1) \times \exp(\lambda_2)$, and $f = \text{Beta} \times \text{Beta}$ belong to this category.
- ▶ The optimal solution for all these cases was given by Daskalakis et al.²
- ▶ In this talk, we shall derive the formulation of the optimization problem as done by Daskalakis et al., discuss their solutions when $f = \text{Unif}[0, b_1] \times [0, b_2]$, and then the work that we have done to find the optimal solution for the case when $f = \text{Unif}[c_1, c_1 + b_1] \times [c_2, c_2 + b_2]$.

²C.Daskalakis, A.Deckelbaum, and C.Tzamos, "Strong Duality for a Multiple Good Monopolist", <http://arxiv.org/pdf/1409.4150v1.pdf>

Primal problem

- ▶ Recall that the auctioneer's objective was to maximize $\mathbb{E}_z t(z)$ w.r.t. IC and IR constraints.
- ▶ Rochet's theorem provides a necessary and sufficient condition for a mechanism to be IC and IR.

Theorem

*A quasi-linear mechanism satisfies IC and IR, iff $u(\cdot)$ is convex, $\nabla u(z) = q(z)$ a.e. $z \in D$, and $u(z) \geq 0 \forall z \in D$.*³

- ▶ This theorem helps us formulate the optimization problem completely in terms of u .

$$\begin{aligned} & \max_u \int_D (z \cdot \nabla u(z) - u(z)) f(z) dz \\ \text{s.t. } & \{u \text{ convex, } \nabla u(z) \in [0, 1]^2 \text{ a.e. } z, \text{ and } u(z) \geq 0 \forall z\} \end{aligned}$$

³J.C.Rochet, "The Taxation Principle and the Multi-time Hamilton Jacobi Equations", Journal of Mathematical Economics 14, 2 (April 1985), 113â128.

Primal problem (contd...)

- ▶ The problem undergoes a series of simplifications as follows:

Primal problem (contd...)

- ▶ The problem undergoes a series of simplifications as follows:
- ▶ $\nabla u(z) \in [0, 1]^2 \Leftrightarrow u(x) - u(y) \leq c(x, y) \quad \forall x, y \in D^2$, where,
 $c(x, y) = (x_1 - y_1)_+ + (x_2 - y_2)_+$.

Primal problem (contd...)

- ▶ The problem undergoes a series of simplifications as follows:
- ▶ $\nabla u(z) \in [0, 1]^2 \Leftrightarrow u(x) - u(y) \leq c(x, y) \forall x, y \in D^2$, where,
 $c(x, y) = (x_1 - y_1)_+ + (x_2 - y_2)_+$.
- ▶ $u(z) \geq 0 \Leftrightarrow u(0, 0) \geq 0$, since $u(0, 0) \geq 0$ combined with
 $\nabla u \geq 0$ implies $u(z) \geq 0$.
- ▶ We further consider $u(0, 0) = 0$, since fixing $u(0, 0) > 0$ only
reduces the objective function.

Primal problem (contd...)

- ▶ The problem undergoes a series of simplifications as follows:
- ▶ $\nabla u(z) \in [0, 1]^2 \Leftrightarrow u(x) - u(y) \leq c(x, y) \forall x, y \in D^2$, where,
 $c(x, y) = (x_1 - y_1)_+ + (x_2 - y_2)_+$.
- ▶ $u(z) \geq 0 \Leftrightarrow u(0, 0) \geq 0$, since $u(0, 0) \geq 0$ combined with
 $\nabla u \geq 0$ implies $u(z) \geq 0$.
- ▶ We further consider $u(0, 0) = 0$, since fixing $u(0, 0) > 0$ only
reduces the objective function.
- ▶ The optimization problem now becomes

$$\max_u \int_D (z \cdot \nabla u(z) - u(z)) f(z) dz$$

$$\text{s.t. } \{u \text{ convex, } u(x) - u(y) \leq c(x, y) \forall (x, y), \text{ and } u(0, 0) = 0.\}$$

Primal problem (contd...)

- ▶ Using integration by parts, the objective function can be written as,

$$\int_D (z \cdot \nabla u(z) - u(z)) f(z) dz = \int_D u d(\mu + \mu_s)$$

- ▶ $\mu(z) := -z \cdot \nabla f(z) - 3f(z)$, $\mu_s(z) := f(z)(z \cdot n)\mathbf{1}(z \in \partial D)$.

Primal problem (contd...)

- ▶ Using integration by parts, the objective function can be written as,

$$\int_D (z \cdot \nabla u(z) - u(z)) f(z) dz = \int_D u d(\mu + \mu_s)$$

- ▶ $\mu(z) := -z \cdot \nabla f(z) - 3f(z)$, $\mu_s(z) := f(z)(z \cdot n)\mathbf{1}(z \in \partial D)$.
- ▶ μ is the density of a measure absolutely continuous w.r.t. \mathcal{L}_2 .
 μ_s , w.r.t. \mathcal{L}_1 , n is the normal to the surface ∂D .

Primal problem (contd...)

- ▶ Using integration by parts, the objective function can be written as,

$$\int_D (z \cdot \nabla u(z) - u(z)) f(z) dz = \int_D u d(\mu + \mu_s)$$

- ▶ $\mu(z) := -z \cdot \nabla f(z) - 3f(z)$, $\mu_s(z) := f(z)(z \cdot n)\mathbf{1}(z \in \partial D)$.
- ▶ μ is the density of a measure absolutely continuous w.r.t. \mathcal{L}_2 .
 μ_s , w.r.t. \mathcal{L}_1 , n is the normal to the surface ∂D .
- ▶ We have $\int_D d(\mu + \mu_s) = -1$.

Primal problem (contd...)

- ▶ Using integration by parts, the objective function can be written as,

$$\int_D (z \cdot \nabla u(z) - u(z)) f(z) dz = \int_D u d(\mu + \mu_s)$$

- ▶ $\mu(z) := -z \cdot \nabla f(z) - 3f(z)$, $\mu_s(z) := f(z)(z \cdot n)\mathbf{1}(z \in \partial D)$.
- ▶ μ is the density of a measure absolutely continuous w.r.t. \mathcal{L}_2 . μ_s , w.r.t. \mathcal{L}_1 , n is the normal to the surface ∂D .
- ▶ We have $\int_D d(\mu + \mu_s) = -1$.
- ▶ To make this 0, we add a point measure μ_p of 1 at $(0, 0)$.
- ▶ Defining $\bar{\mu} = \mu + \mu_s + \mu_p$, we have the objective function to be $\int_D u d\bar{\mu}$. Observe that defining μ_p causes no harm to the objective function since $u(0, 0) = 0$.

Primal and the dual

The Primal problem:

$$\max_u \int_D u \, d\bar{\mu}$$

s.t. $\{u \text{ convex}, u(x) - u(y) \leq c(x, y) \forall (x, y), u(0, 0) = 0.\}$

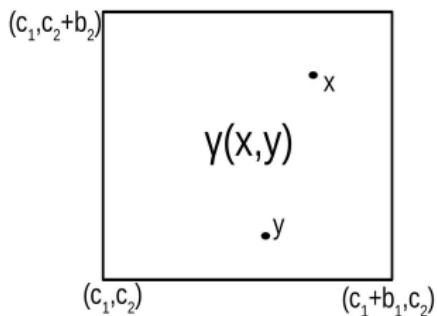
The Dual problem:

$$\inf_{\gamma} \int_{D \times D} c(x, y) \, d\gamma(x, y)$$

s.t. $\{\gamma(\cdot, D) = \gamma_1(\cdot), \gamma(D, \cdot) = \gamma_2(\cdot), \text{ and } \gamma_1 - \gamma_2 \succeq_{cvx} \bar{\mu}.\}$

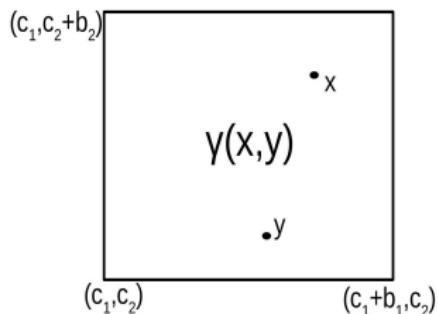
where we say the measure α *convex dominates* measure β ($\alpha \succeq_{cvx} \beta$) if for every convex and increasing function, we have $\int_D f \, d\alpha \geq \int_D f \, d\beta$.

The Optimal Transport problem



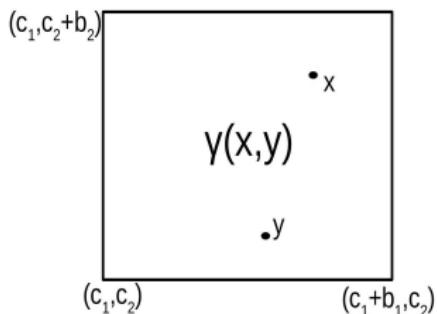
- ▶ The dual problem is a version of *optimal transport* problem.

The Optimal Transport problem



- ▶ The dual problem is a version of *optimal transport* problem.
- ▶ $c(x, y) \rightarrow$ Cost of transporting unit mass from x to y .
- ▶ $\gamma(x, y) \rightarrow$ The differential mass transported from x to y .

The Optimal Transport problem



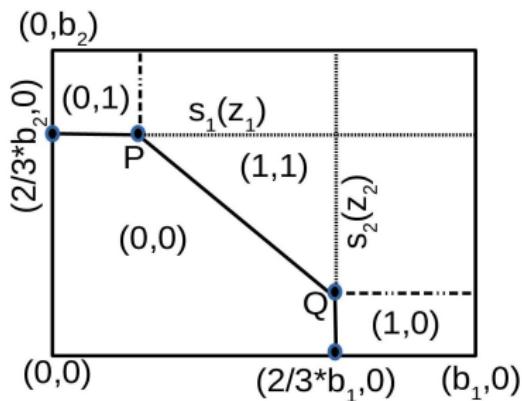
- ▶ The dual problem is a version of *optimal transport* problem.
- ▶ $c(x, y) \rightarrow$ Cost of transporting unit mass from x to y .
- ▶ $\gamma(x, y) \rightarrow$ The differential mass transported from x to y .
- ▶ We need to find a way to minimize the cost of transportation subject to the constraint that $\gamma_1 - \gamma_2 \succeq_{cvx} \bar{\mu}$.

The solution by Daskalakis et al.

- ▶ The problem of optimal transport was solved by Daskalakis et al. for f_1 and f_2 that give rise to a *well-formed* canonical partition of the support set D .

The solution by Daskalakis et al.

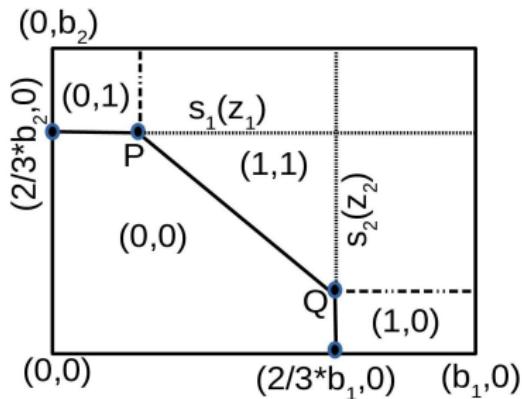
- ▶ The problem of optimal transport was solved by Daskalakis et al. for f_1 and f_2 that give rise to a *well-formed* canonical partition of the support set D .
- ▶ The solution when $f = \text{Unif}[0, b_1] \times [0, b_2]$ is:



where the line joining P and Q is $z_1 + z_2 = \frac{2b_1 + 2b_2 - \sqrt{2b_1 b_2}}{3}$.

The solution by Daskalakis et al.

- ▶ The problem of optimal transport was solved by Daskalakis et al. for f_1 and f_2 that give rise to a *well-formed* canonical partition of the support set D .
- ▶ The solution when $f = \text{Unif}[0, b_1] \times [0, b_2]$ is:



where the line joining P and Q is $z_1 + z_2 = \frac{2b_1 + 2b_2 - \sqrt{2b_1 b_2}}{3}$.

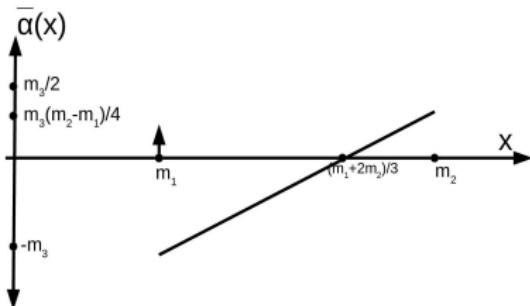
- ▶ The optimal γ that they provide is such that $\gamma_1 - \gamma_2 = \bar{\mu}$.

Uniform $[c_1, c_1 + b_1] \times [c_2, c_2 + b_2]$

- ▶ The procedure suggested by Daskalakis et al. *does not* extend to arbitrary nonnegative values of (c_1, c_2, b_1, b_2) .

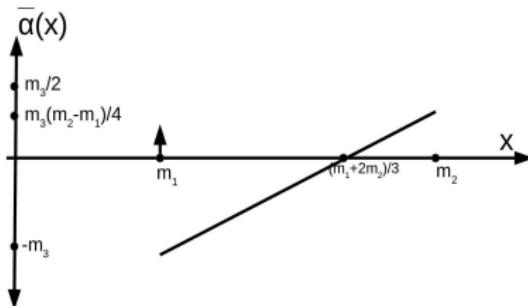
Uniform $[c_1, c_1 + b_1] \times [c_2, c_2 + b_2]$

- ▶ The procedure suggested by Daskalakis et al. *does not* extend to arbitrary nonnegative values of (c_1, c_2, b_1, b_2) .
- ▶ We aim to find a measure $\bar{\alpha}$ such that $\bar{\alpha} \succeq_{cvx} 0$, and then to construct a γ such that $\gamma_1 - \gamma_2 = \bar{\mu} + \bar{\alpha} \succeq_{cvx} \bar{\mu}$.



Uniform $[c_1, c_1 + b_1] \times [c_2, c_2 + b_2]$

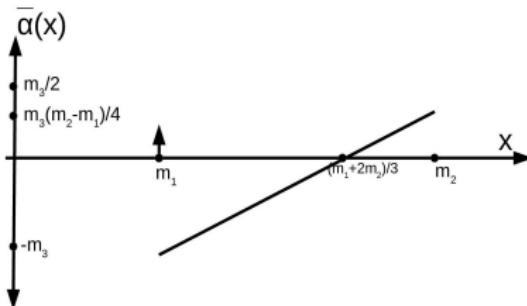
- ▶ The procedure suggested by Daskalakis et al. *does not* extend to arbitrary nonnegative values of (c_1, c_2, b_1, b_2) .
- ▶ We aim to find a measure $\bar{\alpha}$ such that $\bar{\alpha} \succeq_{cvx} 0$, and then to construct a γ such that $\gamma_1 - \gamma_2 = \bar{\mu} + \bar{\alpha} \succeq_{cvx} \bar{\mu}$.



- ▶ One can prove that $\bar{\alpha} \succeq_{cvx} 0$ for any $m_2 \geq m_1 \geq 0$, $m_3 \geq 0$.

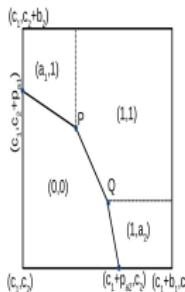
Uniform $[c_1, c_1 + b_1] \times [c_2, c_2 + b_2]$

- ▶ The procedure suggested by Daskalakis et al. *does not* extend to arbitrary nonnegative values of (c_1, c_2, b_1, b_2) .
- ▶ We aim to find a measure $\bar{\alpha}$ such that $\bar{\alpha} \succeq_{cvx} 0$, and then to construct a γ such that $\gamma_1 - \gamma_2 = \bar{\mu} + \bar{\alpha} \succeq_{cvx} \bar{\mu}$.

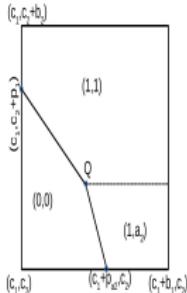


- ▶ One can prove that $\bar{\alpha} \succeq_{cvx} 0$ for any $m_2 \geq m_1 \geq 0$, $m_3 \geq 0$.
- ▶ We thus find a solution which does not relax the convexity constraint.

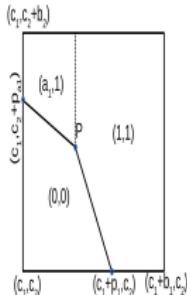
The general structure



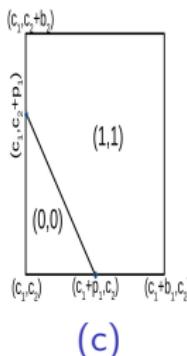
(a)



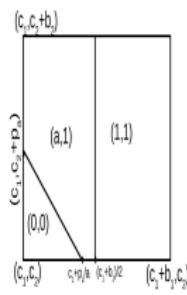
(f)



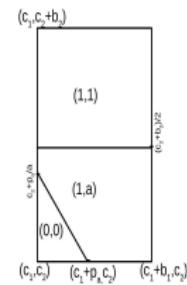
(b)



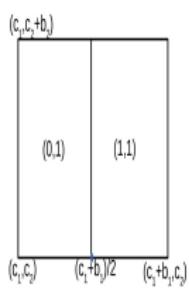
(c)



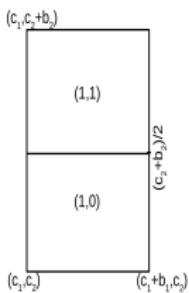
(d)



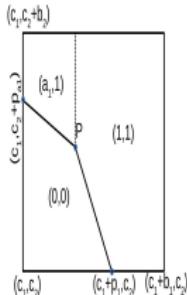
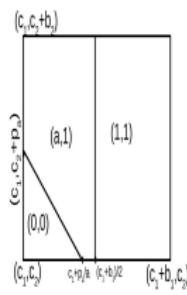
(g)



(e)



(h)



Conjecture

Conjecture

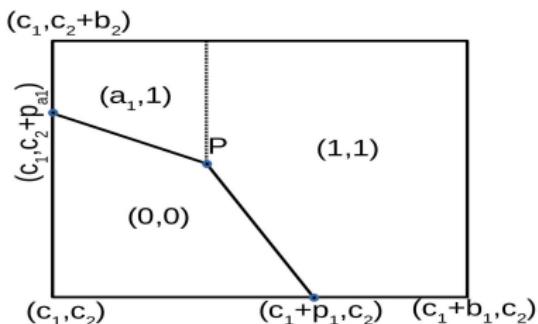
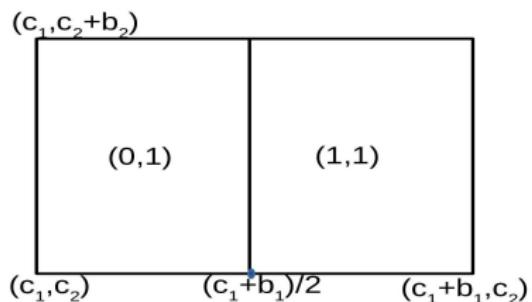
Consider $z \sim \text{Unif}[c_1, c_1 + b_1] \times [c_2, c_2 + b_2]$. The structure of the optimal solution for any $(c_1, c_2, b_1, b_2) \in \mathbb{R}_+^4$ is one among the eight structures (a)-(h).

In other words, defining E_x to be the set of all (c_1, c_2, b_1, b_2) such that the optimal solution has the structure “x”, “x” taking any alphabet from (a) to (h), we conjecture that $\bigcup_{x=a}^h E_x = \mathbb{R}_+^4$.

Structures when $c_1 = 0$

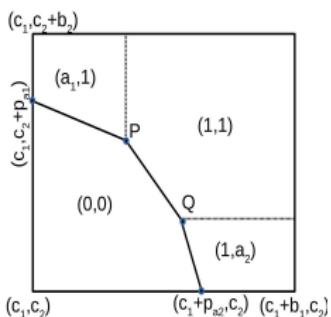
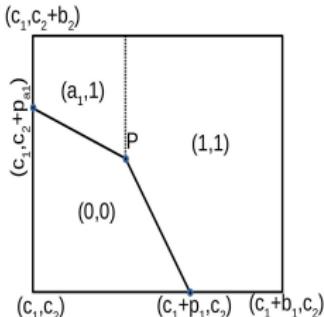
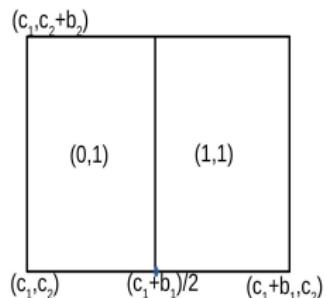
Theorem

Consider $z \sim \text{Unif}[0, b_1] \times [c_2, c_2 + b_2]$. Then the optimal solution has one of the following structures when $\frac{b_1}{b_2} \geq 2$:



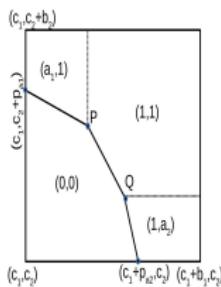
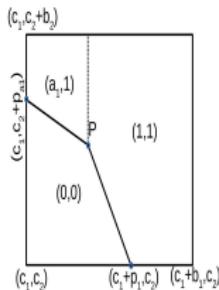
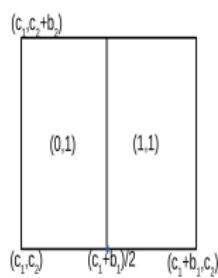
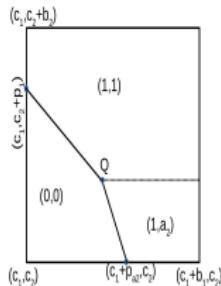
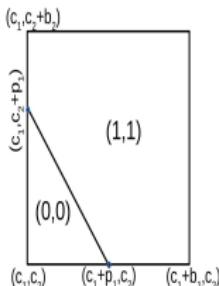
Structures when $c_1 = 0$

The optimal solution has one of the following structures when $\frac{b_1}{b_2} \in [0.6541, 2]$:



Structures when $c_1 = 0$

The optimal solution has one of the following structures when $\frac{b_1}{b_2} \in [0, 0.6541]$:



Summary

- ▶ Formulated the two-item single-buyer auction as an optimization problem.

Summary

- ▶ Formulated the two-item single-buyer auction as an optimization problem.
- ▶ Found its dual to be the the problem of optimal transport.

Summary

- ▶ Formulated the two-item single-buyer auction as an optimization problem.
- ▶ Found its dual to be the the problem of optimal transport.
- ▶ Provided the optimal solution when the underlying distribution of the buyer's valuations are uniform in $[0, b_1] \times [0, b_2]$.

Summary

- ▶ Formulated the two-item single-buyer auction as an optimization problem.
- ▶ Found its dual to be the the problem of optimal transport.
- ▶ Provided the optimal solution when the underlying distribution of the buyer's valuations are uniform in $[0, b_1] \times [0, b_2]$.
- ▶ Identifying that the solution was found by relaxing the convexity constraint, we found a “shuffle measure” $\bar{\alpha}$, and tried to construct a γ that has its convexity constraint tight.

Summary

- ▶ Formulated the two-item single-buyer auction as an optimization problem.
- ▶ Found its dual to be the the problem of optimal transport.
- ▶ Provided the optimal solution when the underlying distribution of the buyer's valuations are uniform in $[0, b_1] \times [0, b_2]$.
- ▶ Identifying that the solution was found by relaxing the convexity constraint, we found a “shuffle measure” $\bar{\alpha}$, and tried to construct a γ that has its convexity constraint tight.
- ▶ We conjecture that the optimal solution satisfies one of the eight structures given by the shuffle measure.

Summary

- ▶ Formulated the two-item single-buyer auction as an optimization problem.
- ▶ Found its dual to be the the problem of optimal transport.
- ▶ Provided the optimal solution when the underlying distribution of the buyer's valuations are uniform in $[0, b_1] \times [0, b_2]$.
- ▶ Identifying that the solution was found by relaxing the convexity constraint, we found a “shuffle measure” $\bar{\alpha}$, and tried to construct a γ that has its convexity constraint tight.
- ▶ We conjecture that the optimal solution satisfies one of the eight structures given by the shuffle measure.
- ▶ The optimal solution was proved to have one of those structures when $c_1 = 0$.

Future Work

- ▶ Can the conjecture be proved? Or can we find a counter-example of a (c_1, c_2, b_1, b_2) whose structure of optimal solution is different from the eight?

Future Work

- ▶ Can the conjecture be proved? Or can we find a counter-example of a (c_1, c_2, b_1, b_2) whose structure of optimal solution is different from the eight?
- ▶ How do we find the optimal solution when the distribution of valuations is not uniform? Can we derive a general solution for finding the solution for any distribution?

Future Work

- ▶ Can the conjecture be proved? Or can we find a counter-example of a (c_1, c_2, b_1, b_2) whose structure of optimal solution is different from the eight?
- ▶ How do we find the optimal solution when the distribution of valuations is not uniform? Can we derive a general solution for finding the solution for any distribution?
- ▶ What happens when the number of buyers is more than 1?