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» Consider the problem of auctioning two items to a single buyer.

» The buyer's valuations z = (z1, z) € ><,2:1[c,-7 ¢i + bj]. Let
D = X,Z:l[c,', Ci + b;].

> zi~ f;, z~ f = fifh, where f is common knowledge. The
buyer bids 2.

» Based on the value of Z, the auctioneer decides the allocation
probability g : D — [0, 1]?, and the payment from the buyer
t:D—R.

» Consider a quasi-linear mechanism, where the utility function
of the buyer is given by u(z,2) = z-q(2) — t(2).
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>

Auctioneer’s objective: Maximize E,t(z), subject to IC and
IR constraints.

IC: u(z) > u(z,2)Vz,2 € D.

IR: u(z) >0Vz € D.

The solution for the single item case was solved by Myerson
way back in 1981.1

Define ¢(z) = z — l;fz()z). Assume that ¢ is increasing. Then
the optimal allocation is given by
1 ife(z)>0
q(z) = o) 20
0 ifg(z) <0

Myerson has also provided the solution for the single-item
n-buyer setting.

'Myerson, R.B. (1981): "Optimal Auction Design," Mathematics of
Operations Research, 6, 58-63.
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Two-item optimal auctions

» What happens in the two-item one-buyer setting?
» The general solution is not known till date!

» The solution is known for cases when the distributions f; and
>, give rise to a so-called well-formed partition of the support
set D.

» Cases such as f = Unif[0, b1] x [0, ba], f = exp(A1) x exp(A2),
and f = Beta x Beta belong to this category.

» The optimal solution for all these cases was given by
Daskalakis et al.?

» In this talk, we shall derive the formulation of the optimization
problem as done by Daskalakis et al., discuss their solutions
when f = Unif|0, b1] x [0, b2], and then the work that we have
done to find the optimal solution for the case when
f= Unif[cl, c1 + bl] X [Cg, C + b2]

2(C.Daskalakis, A.Deckelbaum, and C.Tzamos, “Strong Duality for a
Multiple Good Monopolist”, http://arxiv.org/pdf/1409.4150v1.pdf



Primal problem

» Recall that the auctioneer’s objective was to maximize E,t(z)
w.r.t. IC and IR constraints.

» Rochet'’s theorem provides a necessary and sufficient condition
for a mechanism to be IC and IR.

Theorem
A quasi-linear mechanism satisfies IC and IR, iff u(-) is convex,

Vu(z) =q(z) a.e. z€ D, and u(z) >0Vz € D3
» This theorem helps us formulate the optimization problem
completely in terms of wu.

u

max/ (z-Vu(z) — u(z2))f(z) dz
D

s.t. {u convex, Vu(z) €[0,1]? a.e. z, and u(z) > 0Vz.}

3).C.Rochet, “The Taxation Principle and the Multi-time Hamilton Jacobi
Equations”, Journal of Mathematical Economics 14, 2 (April 1985), 113a128.
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» The problem undergoes a series of simplifications as follows:
» Vu(z) €0, 1]2 < u(x) — u(y) < c(x,y)Vx,y € D?, where,
c(x,y) = (a —y1)+ + (2 — y2)+.
» u(z) >0« u(0,0) >0, since u(0,0) > 0 combined with
Vu > 0 implies u(z) > 0.

» We further consider u(0,0) = 0, since fixing u(0,0) > 0 only
reduces the objective function.

» The optimization problem now becomes

max/D(z -Vu(z) — u(z))f(z) dz

u

s.t. {u convex, u(x) — u(y) < c(x,y)¥(x,y), and u(0,0) = 0.}
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Primal problem (contd...)

» Using integration by parts, the objective function can be
written as,

/(Z-Vu(z)—u(z))f(z) dz:/ ud(p+ ps)
D D

> u(z) = —z-Vf(z) —3f(z2), ps(z) := f(z)(z- n)1(z € OD).

» 4 is the density of a measure absolutely continuous w.r.t. L.
1s, w.r.t. L1, nis the normal to the surface 9D.

» We have [, d(p+ ps) = —1.

» To make this 0, we add a point measure 1, of 1 at (0, 0).

» Defining i = p + ps + pp, we have the objective function to
be [, udfi. Observe that defining 1, causes no harm to the
objective function since u(0,0) = 0.



Primal and the dual

The Primal problem:
max/ udp
v Jp
s.t. {u convex , u(x) — u(y) < c(x,y)V(x,y), u(0,0) =0.}

The Dual problem:

inf c(x,y) dy(x,y)
7 JDxD

s.t. {’7(3 D) = r}/l(’)v ’Y(D7 ) = 72(')7 and Y1 — V2 Zevx ﬁ}

where we say the measure a convex dominates measure (3
(o =cvx B) if for every convex and increasing function, we have

fodaszfdﬁ.
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The Optimal Transport problem

(c,c,+h)
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v

The dual problem is a version of optimal transport problem.

v

¢(x,y) — Cost of transporting unit mass from x to y.

v

v(x,y) — The differential mass transported from x to y.

v

We need to find a way to minimize the cost of transportation
subject to the constraint that v1 — 72 =cx fi-



The solution by Daskalakis et al.

» The problem of optimal transport was solved by Daskalakis et
al. for f; and f, that give rise to a well-formed canonical
partition of the support set D.



The solution by Daskalakis et al.

» The problem of optimal transport was solved by Daskalakis et
al. for f; and f, that give rise to a well-formed canonical
partition of the support set D.

» The solution when f = Unif|[0, b1] x [0, bo] is:

(0,b,)
210D} se)
= H
o P Ly
) N
(0,0) >
Lo
0,0 (2/3*b,,0)  (b,,0)

where the line joining P and Q is z; + 2z = % V2biby



The solution by Daskalakis et al.

» The problem of optimal transport was solved by Daskalakis et
al. for f; and f, that give rise to a well-formed canonical
partition of the support set D.

» The solution when f = Unif|[0, b1] x [0, bo] is:

(0,b,)
210D} se)
o H
o P Ly
) N
(0,0) P
VT
0,0 (2/3*b,,0)  (b,,0)

where the line joining P and Q is z; + 2z = % V2biby
» The optimal =y that they provide is such that v; — 72 = [i.
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» The procedure suggested by Daskalakis et al. does not extend
to arbitrary nonnegative values of (ci, ¢, b1, b2).

» We aim to find a measure & such that & >, 0, and then to
construct a 7y such that y1 —y2 = i + & =cvx [i-

“a(x)

m,/2
m,(m,-m,)/4

Y

» One can prove that & =¢,x 0 for any my > m; > 0, m3 > 0.

» We thus find a solution which does not relax the convexity
constraint.
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Conjecture

Conjecture

Consider z ~ Unif[c1, c1 + b1] X [c2, 2 + bp]. The structure of the
optimal solution for any (c1, 2, b1, b2) € Ri is one among the
eight structures (a)-(h).

In other words, defining E, to be the set of all (¢1, ¢, b1, bp) such
that the optimal solution has the structure “x”, “x" taking any
alphabet from (a) to (h), we conjecture that Ui__E, = R%.



Structures when ¢; =0

Theorem

Consider z ~ Unif[0, b1] X [c2, c2 + bo]. Then the optimal solution
has one of the following structures when L>2:

(c,,c,+b,)

(c,,c,+b.)

(a,,1)

(Cl’C2+pa1)

.1 (0,1) (1,2)

(c,.c,)

(c,*p,.c,) (c+

.C.) (c,.C,) (c,+b )72 (c,+b,,c,)



Structures when ¢; =0

The optimal solution has one of the following structures when
2 € [0.6541,2] :
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v (c,.C,th)
= (arl) 3
Q' Q.E
:,_N 11 :N
S g 01 (1)
(a)
) Gt Gbie) (6,8 Tone) Gbe) @) Gt



Structures when ¢; =0

The optimal solution has one of the following structures when
2 € [0,0.6541] :

(c,e0) (6,c:4b) (c,64)
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Summary

» Formulated the two-item single-buyer auction as an
optimization problem.

» Found its dual to be the the problem of optimal transport.

» Provided the optimal solution when the underlying distribution
of the buyer's valuations are uniform in [0, b1] X [0, b2].

» ldentifying that the solution was found by relaxing the
convexity constraint, we found a “shuffle measure” &, and tried
to construct a «y that has its convexity constraint tight.

» We conjecture that the optimal solution satisfies one of the
eight structures given by the shuffle measure.

» The optimal solution was proved to have one of those
structures when ¢; = 0.
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Future Work

» Can the conjecture be proved? Or can we find a
counter-example of a (c1, ¢z, b1, bp) whose structure of
optimal solution is different from the eight?

» How do we find the optimal solution when the distribution of
valuations is not uniform? Can we derive a general solution for
finding the solution for any distribution?

» What happens when the number of buyers is more than 17



